Renal cysteine conjugate beta-lyase. Bioactivation of nephrotoxic cysteine S-conjugates in mitochondrial outer membrane.

نویسندگان

  • L H Lash
  • A A Elfarra
  • M W Anders
چکیده

Cysteine conjugate beta-lyase activity from rat kidney cortex was found in the cystosolic and mitochondrial fractions. With 2 mM S-(2-benzothiazolyl)-L-cysteine as the substrate, approximately two-thirds of the total beta-lyase activity was present in the cytosolic fraction. The kinetics of beta-lyase activity with three cysteine S-conjugates were different in the cytosolic and mitochondrial fractions, and the mitochondrial beta-lyase was much more sensitive to inhibition by aminooxyacetic acid than was the cytosolic activity. These results indicate that the beta-lyase activities in the two subcellular fractions are catalyzed by distinct enzymes. Nephrotoxic cysteine S-conjugates of halogenated hydrocarbons that require bioactivation by cysteine conjugate beta-lyase (S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine, CTFC) were potent inhibitors of state 3 respiration in rat kidney mitochondria. Fractionation of mitochondria by digitonin treatment and comparison with marker enzyme distributions showed that the mitochondrial beta-lyase activity is localized in the outer mitochondrial membrane. Inhibition of the beta-lyase prevented the mitochondrial toxicity of DCVC and CTFC, and nonmetabolizable, alpha-methyl analogues of DCVC and CTFC were not toxic. Neither DCVC nor CTFC was toxic to mitoplasts, indicating that activation by the beta-lyase occurs on the outer membrane and may be essential for the expression of toxicity; in contrast, the direct acting nephrotoxin S-(2-chloroethyl)-DL-cysteine was toxic to both mitochondria and mitoplasts. Thus, the suborganelle localization of DCVC and CTFC bioactivation correlates with the observed pattern of toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial aspartate aminotransferase catalyses cysteine S-conjugate beta-lyase reactions.

Rat liver mitochondrial aspartate aminotransferase (a homodimer) was shown to catalyse a beta-lyase reaction with three nephrotoxic halogenated cysteine S-conjugates [ S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(2-chloro-1,1,2-trifluoroethyl)-L-cysteine], and less effectively so with a non-toxic cysteine S-conjugate [benzothiazolyl-L-cysteine]. Transamina...

متن کامل

A mechanism of haloalkene-induced renal carcinogenesis.

Several halogenated alkenes are nephrotoxic; some others induce renal tubular adenocarcinomas in rodents after lifelong administration. A bioactivation mechanism accounting for the organ-selective tumor induction has been elucidated: conjugation of the parent compounds with glutathione (GSH), catalyzed by hepatic GSH S-transferases, results in the formation of haloalkyl and halovinyl glutathion...

متن کامل

Nephrotoxicity of the glutathione and cysteine S-conjugates of the sevoflurane degradation product 2-(fluoromethoxy)-1,1,3,3, 3-pentafluoro-1-propene (Compound A) in male Fischer 344 rats.

2-(Fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (Compound A) is a halogenated alkene that is nephrotoxic in rats when administered by inhalation or intraperitoneally. Compound A undergoes glutathione-dependent metabolism: Compound A-derived glutathione S-conjugates and mercapturates are excreted in the bile and urine, respectively, of rats given Compound A. The present experiments were design...

متن کامل

Beta-lyase-dependent attenuation of cisplatin-mediated toxicity by selenocysteine Se-conjugates in renal tubular cell lines.

Cisplatin [cis-diamminedichloroplatinum(II)] is a widely used antitumor drug with dose-limiting nephrotoxic side effects due to selective toxicity to the proximal tubule. In the present study, the chemoprotective potential of three selenocysteine Se-conjugates, Se-methyl-L-selenocysteine, Se-(2-methoxyphenyl)-L-selenocysteine, and Se-(2-chlorobenzyl)-L-selenocysteine, belonging to three structu...

متن کامل

Immunohistochemical localization of glutamine transaminase K, a rat kidney cysteine conjugate beta-lyase, and the relationship to the segment specificity of cysteine conjugate nephrotoxicity.

Rat kidney glutamine transaminase K is a major rat kidney cysteine conjugate beta-lyase and is a key enzyme in the nephrotoxicity of some cysteine conjugates. However, it has not been demonstrated that the beta-lyase is present in the target cells. Furthermore, although all segments of the proximal tubule are affected by high doses of nephrotoxic cysteine conjugates, the S3 segment is the most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 13  شماره 

صفحات  -

تاریخ انتشار 1986